Coverage for src/metador_core/schema/decorators.py: 100%
65 statements
« prev ^ index » next coverage.py v7.3.2, created at 2023-11-02 09:33 +0000
« prev ^ index » next coverage.py v7.3.2, created at 2023-11-02 09:33 +0000
1from typing import Any, Dict, Literal, Optional
3from pydantic.fields import ModelField
5from ..util import is_public_name
6from ..util.models import field_parent_type
7from ..util.typing import get_annotations, is_enum, is_literal, is_subtype, unoptional
8from .core import MetadataSchema
11def _expect_schema_class(mcls):
12 if not issubclass(mcls, MetadataSchema):
13 raise TypeError("This decorator is for MetadataSchema subclasses!")
16def _check_names_public(names):
17 if priv_overrides := set(filter(lambda x: not is_public_name(x), names)):
18 raise ValueError(f"Illegal private overrides: {priv_overrides}")
21def make_mandatory(*names: str):
22 """Make a field inherited from a base class mandatory if it is optional.
24 The field must exist in a base class and must not be defined in the
25 decorated class.
27 Use this decorator instead of manually declaring an annotation,
28 if all you need to do is making an existing field mandatory.
29 """
30 # NOTE: idea: could take a dict, then values are the new default for non-optional
31 # but is this good? defaults are implicit optionality -> we discourage it, so no.
32 _check_names_public(names)
34 def make_fields_mandatory(mcls):
35 _expect_schema_class(mcls)
37 for name in names:
38 if name not in mcls.__fields__:
39 raise ValueError(f"{mcls.__name__} has no field named '{name}'!")
40 if name in get_annotations(mcls):
41 raise ValueError(
42 f"{mcls.__name__} already defines '{name}', cannot use decorator!"
43 )
45 hint = unoptional(field_parent_type(mcls, name))
46 # update model and type hint (important for type analysis)
47 mcls.__fields__[name].required = True
48 mcls.__annotations__[name] = hint
50 return mcls
52 return make_fields_mandatory
55def add_const_fields(consts: Dict[str, Any], *, override: bool = False):
56 """Add constant fields to pydantic models.
58 Must be passed a dict of field names and the constant values (only JSON-like types).
60 Constant fields are optional during input.
61 If present during parsing, they are be ignored and overriden with the constant.
62 Constant fields are included in serialization, unless `exclude_defaults` is set.
64 This can be used e.g. to attach JSON-LD annotations to schemas.
66 Constant fields are inherited and may only be overridden by other constant fields
67 using this decorator, they cannot become normal fields again.
68 """
69 _check_names_public(consts.keys())
71 def add_fields(mcls):
72 _expect_schema_class(mcls)
74 # hacking it in-place approach:
75 overridden = set()
76 for name, value in consts.items():
77 if field_def := mcls.__fields__.get(name): # overriding a field
78 # we allow to silently override of enum/literal types with suitable values
79 # to support a schema design pattern of marked subclasses
80 # but check that it is actually used correctly.
81 enum_specialization = is_enum(field_def.type_)
82 literal_specialization = is_literal(field_def.type_)
84 valid_specialization = False
85 if enum_specialization:
86 valid_specialization = isinstance(value, field_def.type_)
87 elif literal_specialization:
88 lit_const = Literal[value] # type: ignore
89 valid_specialization = is_subtype(lit_const, field_def.type_)
91 if (
92 enum_specialization or literal_specialization
93 ) and not valid_specialization:
94 msg = f"{mcls.__name__}.{name} cannot be overriden with '{value}', "
95 msg += f"because it is not a valid value of {field_def.type_}!"
96 raise TypeError(msg)
98 # reject if not force override or allowed special cases
99 if not (override or enum_specialization or literal_specialization):
100 msg = f"{mcls.__name__} already has a field '{name}'!"
101 msg += f" (override={override})"
102 raise ValueError(msg)
104 else: # new field
105 overridden.add(name)
107 # this would force the exact constant on load
108 # but this breaks parent compatibility if consts overridden!
109 # ----
110 # val = value.default if isinstance(value, FieldInfo) else value
111 # ctype = Optional[make_literal(val)] # type: ignore
112 # ----
113 # we simply ignore the constants as opaque somethings
114 ctype = Optional[Any] # type: ignore
116 # configure pydantic field
117 field = ModelField.infer(
118 name=name,
119 value=value,
120 annotation=ctype,
121 class_validators=None,
122 config=mcls.__config__,
123 )
124 mcls.__fields__[name] = field
125 # add type hint (important for our field analysis!)
126 mcls.__annotations__[name] = field.type_
127 ret = mcls
129 # dynamic subclass approach:
130 # ret = create_model(mcls.__name__, __base__=mcls, __module__=mcls.__module__, **consts)
131 # if hasattr(mcls, "Plugin"):
132 # ret.Plugin = mcls.Plugin
134 # to later distinguish "const" fields from normal fields:
135 ret.__constants__.update(consts)
136 return ret
138 return add_fields
141def override(*names: str):
142 """Declare fields that are overridden (and not valid as subtypes).
144 These are checked during plugin loading, in order to catch accidental
145 overridden fields in schemas.
146 """
147 _check_names_public(names)
149 def add_overrides(mcls):
150 _expect_schema_class(mcls)
151 mcls.__overrides__.update(set(names))
152 return mcls
154 return add_overrides